
Publishing packages on CRAN made simple

Stuart Lacy
20th September 2016

1

Aims

• To provide motivation to publish to CRAN

• Develop an awareness of package development best
practices

• Demonstrate that publishing packages on CRAN is very
achievable

2

Contents

Introduction to CRAN

Package Structure

Documentation

Namespaces

Vignettes and Unit Testing

R CMD CHECK

3

Introduction to CRAN

Why CRAN?

• Why publish code?
• Reproducibility
• Extend the reach/impact of your work
• Teaches you to generalise your ideas into algorithms
• Develop software development skills
• Contribute to open source

• Why CRAN in particular?
• Forces you to write code to a higher standard of quality
and organisation

• Provides higher level of quality assurance for your users
• Familiarises you with idiomatic R coding practices
• Possibility of additional publication:

• Journal of Statistical Software
• The R Journal

• Not that much extra work is required!

4

How to get started

• Highly recommend using RStudio
• Hadley’s devtools package makes everything far simpler
• There is a very specific folder structure which must be
adhered to, but RStudio/devtools takes care of this for you

• Using git for version control is recommended, either with
github, another host, or just locally

• Note that unlike other programming languages which ship
binary files, all your source code will be accessible on
CRAN

5

Package Structure

First package

• Creating a package with RStudio1provides the following
files:

• R/ - Where source code (.R files) are stored
• man/ - Don’t manually edit - Documentation is saved here
• DESCRIPTION - Package details, scraped by CRAN
• NAMESPACE - Don’t manually edit - Describes
import/exports

• packagename.Rproj - RStudio project file
• .Rbuildignore

• Text file containing list of files to not include when building,
i.e. those which won’t appear in the archive that is placed
onto CRAN

• By default contains just the .Rproj file, I also use it for TODO
files and vignette resources

1File -> New Project -> New Directory -> Package

6

Example file structure of a completed source package

• Completed packages will contain additional content, for
example:

• data/ - Any data sets provided with the package (.csv, .txt,
.Rda format)

• tests/ - Unit tests
• vignettes/ - All vignette source files
• NEWS.md - Summarises version release history
• README.md - Simple text file outlining the package and
installation instructions

• I highly recommend looking at others’ code when stuck,
particularly someone like Hadley who is very meticulous with
his coding style and maintains active Github repositories

7

Building packages

• Building a package transforms the raw source code into a
distributable stand-alone package (in the form of a .zip archive)

• In the case of R, this typically is related to non-code aspects

• Function documentation is generated from your docstring
comments

• Vignettes are compiled from Rmarkdown into HTML or PDF
• The NAMESPACE file is updated

• Use devtools::build(), or RStudio offers buttons in that
mysterious “Build” tab

• You don’t need to build the package until you’ve thoroughly
tested it and decided it’s ready for distribution

8

Building packages - 2

• The resulting built packages can be viewed on CRAN,
under ”Source Code” on a package’s page

• Can see our package rprev at
https://cran.r-project.org/web/packages/rprev/index.html

• Package for estimating disease prevalence using
Monte-Carlo simulation

9

https://cran.r-project.org/web/packages/rprev/index.html

Example file structure of a built package

• Additional files made when building package
• build/ - Can ignore. Objects related to vignettes.

• inst/ - Vignette documentation generated from source

• man/ - Function documentation generated from docstrings

• MD5 - Can ignore. Hash of each file contained within for
validation.

• Never want to manually edit these folders/files

10

Documentation

Function documentation

• Simon Hickinbotham’s talk gave examples of these
https://github.com/franticspider/rpkgtalk

• Used to generate the help files viewed with
?function_name

• Write documentation commments with #' above each
function

• A program called roxygen2 converts these into standalone
help documents

• To preview, run devtools::document(), this will place
compiled documents in man folder. Can then view in
RStudio as if package was installed

11

https://github.com/franticspider/rpkgtalk

Docstring example

#' Add together two numbers.
#'
#' @param x A number.
#' @param y A number.
#' @return The sum of \code{x} and \code{y}.
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {
x + y

}

12

Docstring example - 2

• Running devtools::document() makes the help page for
this function viewable

• NB: Examples must be runnable! 13

Namespaces

Namespaces

• Each package has its own namespace, consisting of
function names that it provides; can run into problems
when multiple packages have the same named function

• Challenging concept to grasp, but need to have an
awareness when developing packages

• Never use library() or require() in a package!
• What’s the difference between
library(dplyr) filter(mydf, age<60) and
dplyr::filter(mydf, age<60)?

• Attaching dplyr using library() first means that I can
access any of its other functions straight away, with the
second method I’d still need to use the :: syntax to
access other functions

• Use library() and require() in analysis scripts, but
not in package code

14

Namespace example

Package york

simulate <- function(x) {
library(dplyr)
uses dplyr functions
...
return some value

}

User code

library(Hmisc)
library(york)

dplyr is attached
unbeknown to the
user
vals <- simulate(x)

user wants to use
summarize from Hmisc
but R will try and use
dplyrs version
summarize(vals)

15

Namespaces overview

• Confusingly, we come into contact with namespaces in two
distinct occasions when developing packages:
1. The DESCRIPTION file
2. At the point of use in the code itself, when we want to call
functions from external packages

• What’s the difference between these, and what should we
do to ensure best namespace practices when developing
packages?

16

Namespaces - DESCRIPTION

• In the DESCRIPTION file, we can list external dependencies as
either Imports or Depends

• Depends:
• attaches the package when yours is loaded, adding its
entire namespace of functions to the current environment

• As we’ve seen before, attaching external packages can lead
to confusion for the user

• Only use if your package is heavily dependent upon the
external package and builds upon it

• Imports:
• loads the package when yours is loaded, making it ready
for use but doesn’t add anything to the namespace

• Always use Imports, unless you have a strong reason not to
• Suggests is also used for dependencies to build the package,
but not run it, e.g. those required to compile vignette

17

Namespaces - Referencing external packages

• How do we handle referencing external packages in our
code then? Two choices (assuming external library listed
under Depends):
1. Use the somepackage::somefunction() notation
2. Tell R that we’re going to import this function by adding

#' @importFrom somepackage somefunction to
docstring, and then we can use it as-is, i.e.
somefunction() (still need to add docstring line, even if
we have included package in Imports)

• To make our functions available to a user we need to
export them: add #' @export to the docstring

• Can use this to keep internal helper functions private
from the user

18

Namespace - Summary

• List external packages you use under Imports in the
DESCRIPTION file

• Put a #' @export comment above each of your
functions you want to be publicly available

• Reference external functions using either
package::function() syntax or
#' @importFrom package function and use as-is

• It seems like a lot of unnecessary work, but it will make
your package much cleaner and follow R conventions

19

Vignettes and Unit Testing

Vignettes

• Vignettes are documents related to your package, typically a
user guide

• They are not related to the reference manual, this is
automatically built from the function documentation

• Historically written in LaTeX (via Sweave), but can use
Rmarkdown

• devtools::use_vignette("<vignette name>") to
create the vignette folder and a template vignette

• Can manually knit to preview, but when building package for
CRAN submission it will get automatically compiled and placed
in inst/ (one of the R CMD CHECKS is that all vignettes compile)

• Take the time to write a strong vignette, and it can form the
basis for a later journal submission to JSS

20

Unit Testing

• Won’t spend much time on this as could easily be the subject of
a series of seminars!

• Good testing practice will improve your library’s robustness and
make it easier to spot bugs

• Unit testing involves passing a set of inputs into a function and
verifying that the function behaves as expected:

• Correct output
• Extreme inputs (missing values, empty lists, NaNs)
• Handles errors gracefully
• Guards against incorrectly specified input

• Unit testing encourages single-use functions

• Ideally, write the test before the code

• Check out Hadley’s testthat package
http://r-pkgs.had.co.nz/tests.html

21

http://r-pkgs.had.co.nz/tests.html

R CMD CHECK

Passing R CMD CHECK

• Once your package is ready for submission, you must
check it passes CRAN’s strict criteria: R CMD CHECK

• Can run from within RStudio2, but I’d recommend using
devtools::check() as this will also build the package
for you and cleanup after

• Checks for several things:
• All required information in DESCRIPTION is filled out
• Package imports are ok
• All unit tests pass
• All function documentation is available
• Package can be built (including vignette compiling) and is
< 5MB

• Package can be installed on a user’s machine
2Build -> Check

22

Common reasons for failing

• Namespace issues!
• Not realising some functions aren’t base and need
importing, i.e. stats::lm()

• No visible binding - when use a column name without the
$. Often found when using dplyr/ggplot (use strings
instead)

• A function that you don’t directly call, but is used by an
external function isn’t imported. Find them through
R CMD CHECK and add to #' @importFrom ...

• Haven’t updated version number or date in DESCRIPTION

23

Submission

• Once package passes R CMD CHECK it’s time for
submission!

• Two options:
1. Build package (using devtools::build() or RStudio
button) and manually submit at
https://cran.r-project.org/submit.html

2. Use devtools::submit()

• A CRAN moderator will get back to you relatively promptly
with either instructions on what needs to be fixed, or to
inform you your package has been accepted

• Be patient, I had package rejected twice!

24

https://cran.r-project.org/submit.html

Other resources

• Hadley’s Wickham’s book R Packages is very useful!
• Also available online at http://r-pkgs.had.co.nz/
• Karl Broman’s posts
http://kbroman.org/pkg_primer/pages/cran.html

• François Briatte on submitting
http://f.briatte.org/r/submitting-packages-to-cran

25

http://r-pkgs.had.co.nz/
http://kbroman.org/pkg_primer/pages/cran.html
http://f.briatte.org/r/submitting-packages-to-cran

Any questions?

25

	Introduction to CRAN
	Package Structure
	Documentation
	Namespaces
	Vignettes and Unit Testing
	R CMD CHECK

